Two New Lyme Tests

Two New Lyme Tests

These two tests are not available yet, but they give hope to the millions of people currently suffering from the symptoms of chronic Lyme disease who hang in the medical wind without diagnosis or treatment.

The first test being developed by Rutgers has been tantalizing the scientific community for years. The following was published by Rutgers Magazine:

When word got out in 2009 that two scientists from Rutgers’ Public Health Research Institute, at New Jersey Medical School, were working on a new and vastly improved test for Lyme disease, Lyme sufferers besieged the pair with phone calls and emails asking when it might become available. Existing tests for the disease, which is caused by the bacterium Borrelia burgdorferi and transmitted by blacklegged ticks, are notoriously imperfect. And if the disease goes untreated in its early stages, its effects—including damage to the joints, heart, and nervous system—can be devastating. In fact, the Centers for Disease Control and Prevention (CDC) estimates that 90 percent of Lyme cases go undiagnosed. Given that 30,000 cases are diagnosed in the United States annually (and that Lyme is endemic in roughly 80 other countries), an accurate test for the disease has been the holy grail of researchers and patients for decades.

In innumerable phone and email responses, the researchers—Nikhat Parveen, an associate professor in the Department of Microbiology, Biochemistry, and Molecular Genetics at the medical school, and Salvatore A.E. Marras, an assistant professor in the same department—had to explain that it could be years before the test becomes widely available.

 At that point, they’d only tested the assay (as such tests are known to diagnosticians) on the blood of mice; while it would likely yield similar results in human blood, no one knew that for sure. And once the initial testing process was complete, the researchers would have to find a manufacturer for the assay, which would then require approval by the Food and Drug Administration (FDA).

Today, the test is significantly closer to widespread availability. Parveen and Marras have applied for a patent and are in communication with a company interested in developing and marketing it. It could still take a year or more before the assay is licensed and receives FDA approval, but assuming it does, it will surely change lives.

What makes the test so important to those suffering—or who think they may be suffering—from Lyme disease is its potential for accuracy. Current FDA-approved assays reveal the presence of antibodies to the Lyme bacterium, but because those antibodies remain in the blood even after the Borrelia bacteria are no longer present, it’s impossible to tell from the results whether or not the infection is still active.

The tests can also produce false negatives, indicating that Lyme isn’t present when, in fact, it is. The CDC recommends that current tests be used only as supporting evidence for a diagnosis made on the basis of symptoms and medical history.

Parveen and Marras’s assay would change all that. Not long after she arrived at the institute in 2005, Parveen attended a lecture in which Marras spoke about molecular beacons, a technology he’d invented along with research partners Fred Kramer and Sanjay Tyagi. The beacons are microscopic probes synthesized from genetic material, designed to fluoresce brightly when they come into contact with a target molecule of DNA or RNA. Marras compares them to “little lanterns that will go on only when their specific pathogen is present.”

Parveen knew at once, she says, “that I wanted to incorporate them into my research.” Thanks to its use of molecular beacons, the new blood test is able to reveal the presence of the bacteria themselves rather than antibodies to them. What makes molecular beacons such a powerful diagnostic tool is the fact that they can be engineered to detect multiple pathogens in a single blood sample. “You can put in a green bulb, say, for Borrelia and a red bulb for something else,” Marras says. 

That’s an important step forward: Parveen, whose work on tick-borne pathogens earned her a 2015 Excellence in Research award from the New Jersey Health Foundation, was well aware that the Lyme bacterium isn’t the only pathogen making its home in blacklegged ticks. Two other bad actors, the bacterium Anaplasma phagocytophilum and the parasite species Babesia, have been found in the same ticks that harbor the bacteria that cause Lyme disease, and their effects can be equally pernicious.

Although the diseases they cause—anaplasmosis and babesiosis—can be asymptomatic, particularly in their early stages, their symptoms, such as fever, headache, and malaise, can also mimic those of Lyme disease. It’s conceivable, then, that a person could be infected with all three pathogens at once, which makes an assay that can detect them all particularly valuable, especially given that bacterial and parasitic diseases require different treatments. 

The test’s ability to find Anaplasma and Babesia in blood samples also makes it potentially valuable to blood banks, which at present have no way to test for the pathogens. Both diseases can be spread by blood transfusions and, because they’re often asymptomatic in early stages, infectious microbes can enter the nation’s blood supply with relative ease. (Lyme tends not to be a problem in the blood supply because its symptoms, for the majority of sufferers, appear early in an infection.) In fact, the first FDA-approved use of the test might well be among blood banks, although Parveen and Marras expect that it will eventually be used to diagnose disease in patients as well.“The advantage of our assay,” says Parveen, “is that it can be used in both settings”—ensuring a safer blood supply and a healthier world.

The second test uses DNA to determine the presence of Borrelia. I have been waiting for this test ever since Dr. Benjamin Luft and his team of researchers at SUNY Stony Brook Medical School first mapped the genome for Borrelia burgdorferi (strain 31) back in 2009. One of the inherent problems with DNA is that with over 100 strains in the US and over 200 worldwide, the test could be problematic if the approach is not specific to common factors. However this second test will reveal up to 20 species.

Phoenix’s TGen Research Institute sent out the following press release last summer:

Focus On Lyme, an initiative sponsored by the Leadership Children’s Foundation of Gilbert, Ariz., has donated $75,000 to the Translational Genomics Research Institute (TGen) to support research into the development of a quick, affordable and accurate method of diagnosing Lyme disease.

Scientists at TGen’s Pathogen Genomics Division in Flagstaff, Ariz. – TGen North – will use the power of targeted DNA sequencing to develop and validate a test to measure the presence and severity of tick-borne Lyme disease at the genomic level.

By analyzing a sample’s DNA, the new test should be able to pinpoint Lyme disease, identify multiple Lyme strains, detect other tick-related infections, and show non-Lyme causes of disease.

“With recent advances at TGen and genomics overall, we can finally develop a diagnostic test that will put more actionable information into the hands of the physician than previously possible. We are thrilled to be working with Focus On Lyme on this project,” said Dr. Paul Keim, Professor and Director of TGen North and Director of the Center for Microbial Genetics & Genomics at Northern Arizona University (NAU), which will help develop the test.


(Visited 325 times, 1 visits today)
Subscribe to Jenna's Lyme Blog
Yes, I want to subscribe. I understand I will only receive one email each month when there are new posts.
This entry was posted in Chronic Lyme Disease, Coping with Lyme disease, Diagnosis of Lyme Disease and tagged , , , . Bookmark the permalink.

One Response to Two New Lyme Tests

  1. Pingback: Forward Thinking! | Ticktalkireland's Blog

Leave a Reply

Your email address will not be published. Required fields are marked *