Finally New Light On Chronic Lyme Disease

Finally New Light On Chronic Lyme Disease

The University of Toronto released a groundbreaking research study yesterday in Cell Reports that finally explains how Borrelia evades antibiotics and causes chronic symptoms.After decades of controversy, mainstream medicine may finally have a clear understanding of how the spirochete bacteria persist in spite of treatment thanks to a team of scientists in Toronto lead by Dr. Rhodaba Ebady.

Scientific American reports:

B. burgdorferi uses a special adhesive protein on its surface to grab like a hook onto the endothelial cells that line blood vessels, attaching and detaching rapidly as it migrates to its destination, the Toronto microbiologists explain in a new study published Thursday in Cell Reports. “This mechanism is how the bacteria can overcome the fast flow of blood and avoid getting swept away,” says lead author Rhodaba Ebady. It is also likely that this tactic helps the pathogens get to sites where they are able to evade the immune system and treatment, Ebady says.

The initial infection is transmitted to humans via the bite of an infected black-legged tick (aka deer tick), which usually leaves behind a characteristic bull’s-eye rash. Symptoms can include fever, headache and fatigue. It can be treated with antibiotics if it is caught early on. But in about 20 percent of the cases severe symptoms such as joint pain and cognitive problems last even after treatment—a condition physicians call post-treatment Lyme disease. Other more chronic symptoms can be similar to those of different illnesses such as arthritis or peripheral neuropathy, and scientists disagree about whether or not they should be labeled Lyme disease.

Very few other bacteria can bring on such a variety of symptoms or infect such hard-to-reach tissues, says Kim Lewis, a professor of microbiology and director of the Antimicrobial Discovery Center at Northeastern University. “Bacteria that cause syphilis, meningitis and leptospirosis are some examples, but they have one or two target organs,” says Lewis, who was not involved in the new study. “B. burgdorferi, however, seems to be able to sneak into all of these areas, and one of the biggest unsolved problems in Lyme disease is how it gets to all of those places.”

To observe how B. burgdorferi may travel to these tissues, Ebady and her team used human endothelial cells in the lab to re-create conditions inside blood vessels. The researchers watched through a microscope as bacteria, tagged with green fluorescent protein, moved across the cells in real time. The researchers discovered that B. burgdorferi relied on a protein called BBK32—which had previously been implicated in studies in mice—to tether themselves to the endothelial cells. BBK32 acted like an exceptionally strong bungee cord, helping the bacteria accelerate through the vessels or decelerate when they needed to get out of the bloodstream and into surrounding tissue. “Normally, when you pull on bonds they break. But this kind of ‘catch bond’ is the opposite—it strengthens with force and makes the bacteria even more firmly attached to cells in our body, kind of like if you twist two hooks together and end up locking them even tighter as you pull them,” says senior study author Tara Moriarty.

Ironically, this kind of attaching and rolling mechanism is very similar to how leukocytes—white blood cells that fight pathogens—find their way to infection and injury sites. But these beneficial cells are very different from spirochete bacteria like B.burgdorferi, both physiologically and genetically, Moriarty says. Although the same mechanism probably evolved independently in the bacteria and leukocytes, it could provide a glimpse into how other similarly resilient bacteria might move through the body and avoid detection by our immune system, she adds.

The findings also suggest that studying the structure of the BBK32 protein may help determine how bacteria target specific endothelial cells to hide in different tissues, Ebady notes. Eventually, she says the protein sequence and configuration information could be utilized to develop drugs that target BBK32 or its endothelial receptors, which might help prevent or slow down the spread of Lyme disease.

This is HUGE news! It is total validation not only for the brave LLMDs who have had to contend with derision from their peers, but for the hundreds of thousands of sufferers who have been shunned or maligned for having the bad luck of contracting such a controvertial disease.

It will be interesting to see how the CDC and IDSA leadership respond to this solid research.

We have all been vindicated.

(Visited 3,238 times, 1 visits today)
Subscribe to Jenna's Lyme Blog
Yes, I want to subscribe. I understand I will only receive one email each month when there are new posts.
This entry was posted in Chronic Lyme Disease, Discussion, Lyme Disease News, medical controversies, Research and Development and tagged , , . Bookmark the permalink.

4 Responses to Finally New Light On Chronic Lyme Disease

  1. Mark Stirling says:

    Keep up the good work. I am sure there are many misdiagnosed people suffering with Borella or a lyme coinfection out there. It took a US LLMD about 5 minutes to diagnose my son’s bartonella infection. We need to educate more Canadian MDS including neurologists who seam totally unaware of Lyme and it’s neurological effects.

  2. James says:

    This is most certainly breakthrough research results as it points directly to the one thing that can lead to one being free of Barrelia-burgdorferi bacteria. That one thing is preventing the bacteria from creating bio film and bio film cysts. If the bacteria is prevented from creating bio film whether OspA or OspB one’s own immune system may be capable of killing off the bacteria and if it isn’t capable there are several supplements that will or will boost immune systems to the point they are capable of killing off the bacteria. I candidly envision in the future that no antibiotics will need be included in any treatment protocol.

    So, for those of us infected our goal should be promoting a major focus on preventing bio film creation. Nothing else really matters if we are to ever be free of the bacteria.

Leave a Reply

Your email address will not be published. Required fields are marked *